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OVERVIEW!

Basic theory and what is currently in LArSoft

Implementation on RawDigits

First results
• …on all of one event

Conclusions
• Putting it into LArSoft
•  Items/methods to be tested
•  Ideas on 3D
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IMAGE PROCESSING: STRUCTURE TENSOR!

Harris-Stephens is an image-processing technique 
based on locating large changes in “intensity”
• Take digitized 2D-image
• Create partial derivative images for both dimensions

•  I’ll call the directions x and y
• Construct “structure tensor” over some local 

neighborhood of pixels
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WITH THAT STRUCTURE TENSOR!

Analyze the eigenvalues of A
• The eigenvalues tell you how fast things are changing, 

and in how many dimensions

• λ1 ~ λ2 ~ 0
•  No big changes – things look similar in every direction

• λ1 >> λ2 ~ 0
•  See large directions along one direction (given by the 

eigenvector…), and not so much along the other
•  This would be an edge

• λ1 ~ λ2 >> 0
•  Big changes in intensity along all directions – a corner!

•  Or an endpoint, or a singularity
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HOW TO ASSIGN A SCORE TO EACH PIXEL!
Harris-Stephens
• det(A) – κ ∙ tr(A)2 = (λ1λ2) – κ (λ1+λ2)2

•  κ is just empirically determined; typically ~ 0.05
•  For noise-space, score ~ 0; for edges, score < 0, and for 

corners, score > 0

Noble (?)
• det(A) / tr(A) =  (λ1λ2) / (λ1+λ2)

•  For noise, score ~ 0; for edges, score is smallest eigenvalue; 
and, for corners, score ~ eigenvalue magnitude

Shi-Tomasi
• min(λ1 , λ2)

•  More computationally intensive than the others…
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DOES IT WORK?!

Sure it does!
• Widely-used in image�

processing

Of course, there are other �
methods too
• Second-derivative�

approaches
• Template-matching

4/17/13 6

http://glowingpython.blogspot.com/2011/10/corner-
detection-with-opencv.html



COULD WE USE IT IN LAR TPC 
RECONSTRUCTION?!
Sure we can!

In fact, already exists as a vertex-finder
• My understanding of HarrisVertexFinder_module

•  Takes in hits from clusters
•  Fills 2D images with Gaussian centered around hit center
•  Uses Noble score as measure of cornerness
•  Matches every found corner to a hit
•  Sends out list of corners up to specified maximum

So, can we do better?
•  I don’t know…but, this feels unnatural to me
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TREATING OUR DETECTOR LIKE A CAMERA!

• We take NPlanes 2D pictures
•  x = wire direction, y = time direction


Why not apply algorithm to raw or calibrated data?
• Benefits:

•  No discontinuities that aren’t real properties of the event
•  Use all of the data possibly available to you
•  More time-efficient

•  data à hits à clusters à hits à (less) data à corners ?
•  Let’s you start to dream about low-latency feature finding

• Drawbacks
•  None that I’ve thought of (i.e. I haven’t tried to think of any)

•  Well, matching to hits could be an issue
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TRIAL RUN ON RAWDIGITS!

Got (1) CCQE event from Jonathan Asaadi
Looking at collection plane
• Collapsed time bins to match spatial range of wire 

pitch
•  And zoomed in on the action

 

4/17/13 9
Wire Number

580 600 620 640 660 680 700 720

Ti
m

e

1100

1120

1140

1160

1180

1200

1220

1240

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wire Number
580 600 620 640 660 680 700 720

Ti
m

e

1100

1120

1140

1160

1180

1200

1220

1240

1

10

210

310



NEXT, TAKE THE DERIVATIVE!

There are a number of ways one can do this
•  I am using a “Sobel” mask, which looks at 3x3 pixel 

region, to get somewhat smoothed derivative
•  This is standard, but it’s not clear if it’s the best for us
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RESULTS OF ANALYZING EIGENVALUES!
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REDUCE TO FIND LOCAL MAXIMA!

• Set a minimum threshold of interest, and a 
neighborhood around which to select only local 
maxima

• Shown here
•  Noble score
•  threshold > 5e6
•  neighborhood of 3 �

pixels
•  Total of 31 feature �

points
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SIDE-BY-SIDE WITH RAW DATA!
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OK, NOW WHAT?!

Up to everyone else

Here’s what I’ve started playing with: finding primary 
vertex by performing “path integrals”
•  Idea: lines between feature points should be populated 

consistently by charge
• So…draw a line between all pairs of feature points

•  Keep count of how many lines have most intersected bins 
(>90%) with some activity (>5 ADC counts for now)

• Vertices should have multiple lines coming out
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FOR THE NOBLE SCORE HISTO…!

• Getting a lot of stuff in the shower
•  Not surprising

• What happens if we lower the threshold from creating 
the max suppressed plot?
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LOWERING THAT THRESHOLD!

• We get more feature points along each track à picking 
out where the long tracks intersect rather well

•  Likely needs a lot of tuning, but this may be promising
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CONCLUSIONS FOR NOW!

Working on putting this into LArSoft
• Brian suggested implementing as algorithm
• Ben C., Jonathan, and I put in the bulk of the code last 

night
•  Needs fixes to make it work

Needs lots of testing/tuning
• Derivatives, corner score, neighborhood sizes, 

thresholds, etc.

Should be easily extendable to 3D
• Working on framework for that
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